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Abstract

We define interval spacing as the difference in the order statistics of
data over a gap of some width. We derive its density, expected value, and
variance for uniform, exponential, and logistic variates. We show that
interval spacing is equivalent to running a rectangular low-pass filter over
the spacing, which simplifies the expressions for the expected values and
introduces correlations between overlapping intervals.

The theory behind spacing, the difference between consecutive order statis-
tics, is well-developed by now. Occasionally one sees the difference over larger
gaps being used. [7] estimates the location of the mode as the midpoint of the
interval with the most data points, where the size of the interval depends on
the polynomial order of the data around the mode. [1] collects a test statistic
over a range of gaps to determine if data has a non-zero slope. [2] and [4] study
such test statistics in general for non-overlapping segments.

Let us call “interval spacing” the difference in order statistics over distances
greater than one. Extending the notation used in [5] with ¢ the upper index and
w the width of the interval such that w < ¢ < n, the interval spacing D; ,, is

Di,w = Ti - /Tifw (1)

where T is the i*" order statistic. Alternative notations that have been used
are a center point j = ¢ — (w/2) and radius r, = w/2 [7, (2.1)], or start index
j=1i—w+1 and endpoint k = ¢ of the range [1]. In this notation the spacing
Di = Di,1~

The density of the interval spacing
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follows from the joint density of two order statistics [8, (8) and (31) with r = i—w
and " = 4], where F,(z) and f,(z) are distribution and density functions.



Expanding [5, (2.4)] gives the same density, using k1 = i — w, t; = x, ko = 1,
to =z +vy, ks =n+1, t3 = 0o, and tm) = —oo. (2) simplifies to the spacing’s
density function [5, (2.7)] when w = 1; notably, the factor of the distribution
function raised to w — 1 disappears. The expected value and variance follow
normally from the first two moments of this density.
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For uniform variates over the range a, b we have

ID1anis W) = " ( ! )nywl (b—y—a)"™™ (5)

w—1D(n—-—w)! \b—a
(D) = 151 o
V{Di,w,unif} =w (n;::_; w) <z+i>2 (7)
For exponential variates with rate parameter \ these are
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Use (4) and the last two equations to calculate the variance; squaring (9) and
subtracting from (10) does not lead to a simpler equation. The pre-factor can
also be written (n — i +w)!/(w — 1)!(n — 7)!, which will cancel a factor (w — 1)!
from the combinatorial inside the series.

For logistic variates with mean p and standard deviation o we find
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The second moment would require an additional integration by parts of these
terms, which we do not perform. B(a,b) = (a — D)!(b— 1)!/(a + b — 1)! is the
beta function and ¢ (z) the dilogarithm.

The interval spacing introduces an extra factor F*~! of the distribution
function which requires an integration by parts to handle. This leads to more
complicated expressions for the expected interval spacing than for the normal
spacing, although all results reduce to the spacing versions found in [3] if w = 1.
The uniform and exponential equations follow from known definite integrals (see
Supplemental Materials for derivations). Rather than integrating the hyperge-
ometric function in the logistic density function (11) to get the first moment, it
is better to integrate first over y after combining (2) and (3), then over z. This
must be done by parts, which involves a recursion down n that gives a series
that must then be integrated term by term.

High-precision math libraries must be used to evaluate the series. The fac-
torial scaling factors in (5) — (11) reach n* /w! while the spacing is of order one,
so the series sum of terms of alternating sign of this size must nearly cancel.

Figure 1 plots the density of the interval spacing for draws of n = 50 data
points. The function for uniform variates in the left graph is independent of
the index 4, but the others show two sets of curves. The densities with high,
narrow peaks correspond to small values from the variate, found at the start of
the exponential’s order statistics, drawn with ¢ = w + 2, or the center of the
logistic, drawn with ¢ = n/2. The lower, broader densities come from the tails
of the distribution where the order statistics are largest. This occurs near the
final indices of the expontial, drawn for ¢ = n — 2, and the initial indices of the
logistic, drawn for ¢ = w + 2 but also valid by symmetry at the other tail. All
densities skew to the right, although this is much more noticeable in the broader
curves.

Figure 2 plots the expected interval spacing for exponential and logistic
variates at three widths; the data size n = 50 has been kept small for visibility.
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Figure 1: Density of the interval spacing at widths w of 2, 5, and 10 and indices i as
noted.
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Figure 2: Expected interval spacing for exponential and logistic variates at widths w
of 2, 5, and 10. Bands are inter-quartile ranges from simulations.

The grey bands are inter-quartile ranges based on ten thousand simulated draws.
The expected values are not centered, lying closer to the upper quartile. This
reflects the skewing of the density. Such shifting also happens for the medians,
not plotted.

An interval can be broken into non-overlapping segments whose sub-spacing
will add. For example, if w is even we can split the interval in half,

Di,w/? + Di—w/Q,w/Q =T - ﬂ—w/? + T‘—w/2 —Tiw=T; =Ty
=Diw (13)

The half intervals sum to the whole. Any sub-intervals need not have the same
size, which would happen in this example if w were odd, but the endpoints must
match and cover the whole range. Splitting into more pieces is also possible, a
process which ultimately ends by breaking the interval into w single steps. The
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Figure 3: Interval spacing is equivalent Figure 4: Low-pass filtering of spacing
to a rectangular low-pass filter applied for increasing interval widths w.
to spacing.

interval spacing is the sum of these spacings,

w—1

Diw=>»_ Di (14)
=0

A sum over consecutive data points is just a rectangular low-pass filter. If
the total were divided by w this would be a running mean. Because such
normalization is not done — the filter kernel is a vector of w 1’s rather than
1/w’s — larger intervals amplify differences. This must be taken into account
when comparing different widths. The spacing is not constant over the interval
so the interval spacing is not just the spacing scaled by w, although it is close,
especially where the variate’s density is nearly constant, at the start of one-sided
distributions or the center of two-sided.

We can demonstrate that filtering occurs by taking the ratio of the Fourier
transforms of D;,, and D; and comparing it to the impulse response R of the
rectangular kernel r. That is,

Figure 3 shows the ratio applied to a draw of 1200 points from a uniform distri-
bution. The transforms of the spacing and interval spacing at w = 10 have been
smoothed for display, but their ratio has not. Superimposed is the magnitude
of R, which has the same number of side lobes at the same height.

(14) also applies to the expected values, which allows us to simplify (9) using
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and (12) with E{D; jogis} [3, (17)]

w—1

E{Di,w,logis} = j;) (i—j—Ln—itj+1) (17)

The expected spacing for uniform variates, (b —a)/(n + 1), is repeated w times
in the sum independently of j, matching (6). We could write an expression
for the expected interval spacing for Gumbel variates using [3, (20)], although
the result is neither simple nor illuminating. (14) can also be used for variates
requiring numeric integration for their expected spacing.

Unlike (9) and (12), (16) and (17) do not require high precision libraries and
can be evaluated directly.

Although a rectangular low-pass filter has a wide main band, it suppresses
the sidelobes by only a moderate amount, which allows high-frequency residuals
to remain, especially at sharp edges. Figure 4 plots the spacing for the depth
of earthquakes under Mt. St. Helens before its eruption in 1980 [6]. Depths
are considered below the surface and are negative, so the first order statistics
are the deepest and the largest interval spacings are at the smallest indices
and initially decrease rapidly. There are five individual large spacings between
indices 40 and 100 corresponding to a depth of -7.90 — -5.62 km, and a cluster
around 130, between -4.83 km and -2.87 km. The former create small coarse
bumps in the w = 8 interval spacing, and the latter a sharp peak. This peak
widens with the interval width, while the bumps merge into a single rough
region without damping their range, an example of insufficient suppression of
higher frequencies. Eventually at w = 32 one individual point falls within every
interval and the bumps disappear. The signal simplifies to a nearly constant
level, becoming a plateau or flat. The trailing edge of the peak beyond index
150 does become smoother with larger intervals.

If we consider overlapping intervals by lag 1 <[ < w,
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where in the second step we have shifted &’ = [ + k. The two terms in the final
result do not overlap, because the common spacings ZZ’;; D;_j, have canceled.
Said differently, overlapping intervals will be correlated, sharing w—1I terms. The
autocovariance of the interval spacing follows the convolution of the rectangular
kernel (not its impulse response) with itself, which is a linear decrease with
initial value equal to the variance of D, ,, and slope =V {D; ,,} /w (Figure 5).
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Figure 5: Auto-covariance of the inter-
val spacing follows the self-convolution
of the rectangular kernel.

Supplemental Material

The supplement for this paper includes derivations of the density, expected
value, and variance of the interval spacing for uniform, exponential, and logistic
variates.
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