Supplement to Interval Spacing

Greg Kreider

Derivation of Equations
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throughout to denote the scaling factor before the density function, as in the main text.
The density of the interval spacing is
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The expected value and variance follow from the first and second moments.
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Interval Spacing for Uniform Variates

The variate’s density and distribution functions are

1
fu’mf(x) - b—a
r—a
Fumf(z) = b—a

for a < a < b, with f(z) zero outside this range and F(z) zero below and one above.
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Using [1, (3.196.3)]
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witha=a,f=b—y,p=i—w,v=n—i+land p+v—1=n—w,
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If w = 1 this matches the spacing result [2, (4)].
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Again using [1, (3.196.3)] with a =0, 8=b—a, p=w+1l,v=n—w+1l,and p+v—1=n+1,
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If w =1 this reduces to the spacing result [2, (5)].

Variance of Interval Spacing
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With w = 1 this is the same as the spacing variance.



Interval Spacing for Exponential Variates

The variate’s density and distribution functions are
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Fegp(z) =1— e A

for x > 0.
Density Function
oo i—w— w—1 n—i
fDi,w,Ea:p(y) _ Sl/ {1 _ e—/\z} 1 {(1 . e—/\(z—i-y)) _ (1 _ e—)\w)} {1 _ (1 B e—k(z-‘ry))}

A e M\ e ANEY) gy

_ s, /°° (1 _e,m}ifwfl {e*“ _efx(ﬁy)}“"l {ef)\(w+y)}n_i A2 o= AT o= A@+Y) gy
=9 /oo {1 _e—A:c}i_w_l e—)\(w—l):c {1 _ e—/\y}“’_1 e—)\(n—i)x e—/\(n—i)y A2 e—2>\x e—/\y dx
—o0
=5 efA(nfi)y ef)\yAZ /OO {1 _67)\1’}1.7“)71 ef)\(wfl)z efA(nfi)x e~ 22T o
=5 {1 — e_’\"’}wi1 / {1 — e_’\m}iiwil e~ An—itwithz g,
0

With [1, (3.312.1)]
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If w = 1 this simplifies to [2, (7)].
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and making the variable change y = 2/, dy = dx /X so that
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we identify v=2, a=w—-1, u=n—i+1,and a4+ pu=n — i+ w, giving
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If w =1 the sum reduces to one term and we have 1/A\(n — 4 + 1), which is the same as [2, (8)].

Variance of Interval Spacing
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where we have again changed variables in the third line. From [1, (3.412)] withnow v =3, p=n—i+ 1, a = w — 1,
p+a=n—i+w,and I'(v) =2

With the series we cannot easily square this, so the variance uses (4) with (E.4) and it. If w = 1 the value simplifies to
2/(A(n — i+ 1))?, which after subtraction reduces the numerator to 1 and matches the variance of D;.
To evaluate this series, you must use a high precision math library.

Interval Spacing for Logistic Variates

The variate’s density and distribution functions are
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for all x. Substituting z = (z — u)/o and dz = dx /o, and for the shifted functions v =y/o
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This has the form [1, (3.315.1)]
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Letting 8 =0, v =14, vy=v,p=n—1+w+ 1, and pg = n — i+ w + 1, this satisfies the requirements for the definite
integral. Further, v+ p—p—1=i—-1,v+p—1=n+w, and v(u — p) — Bv =0, giving
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Expected Interval Spacing

Rather than attempting to integrate the hypergeometric function, we swap the order of the variables to get the expected
interval spacing for the logistic function.
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To evaluate the inner integral, we will first evaluate by parts which will give a series, and then will expand a polynomial
in a second series. First we will need a series solution to an indefinite integral. From [1, (2.153)]
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Substituting this back in,
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integral is

(c+ zd)” x__u!(u—u—2)! - ot )k ad—be\® 1 1
/(a—|—1:b)“d ~ bla+ bx)nt kZ:O( +ad) ( b > =K' (p—v+k-1) (L4)

To solve I;,, we work by parts, which will require (L.4). Let ¢t = v, dt = dv, and
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making the further substitution » = e” and dr = e”dv. This is in the form of (L.4) witha=e"*,b=1,¢=-1,d =1,
v=w-1l,p=n—i+w+l,andv—pu—1=n—i+1. So
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The square brackets in the third step goes to zero at both bounds, with 1/e” dominating at infinity and v at 0.
To evaluate this integral we now expand the first factor as a polynomial using [1, (1.111)]
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The first two terms have been expanded from the series because they will integrate simply. We have v = w — 1 — k and

a = —1 for x = e”. The second term will disappear if v = 0 or k = w — 1. Ignore the sum if v < 2, which occurs at w = 2

or k>w—2. So
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For the first integral we substitute r = e + e~ %, dr = e’dv = (r — e~ #)dv. We will also need [1, (2.117.4)]
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At v = 0o both terms go to 0, and at the lower bound eV is 1.
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For the second integral we substitute r = e, dr = €“dv, and use [1, (2.111.1)]
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where the integral is zero at the upper bound and again ¢’ — 1 at the lower.




After making the same r substitution, the third integral takes the form of (L.4) witha =e *,b=1,¢=0, d =1,
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with the same behavior at the upper and lower bounds.
Assembling the three integrals, we get
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We can simplify the scaling factors in the last term, canceling the (I — 1)! from the binomial coefficient and leaving a
factor of 1/1. For calculations the fractions of similar factorials reduce further to products.
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The expected interval spacing is now, with the inner integral known,
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There are four integrals in the last lines, but only two unique forms. For the first term we will use [1, (4.293.14)]
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first term becomes
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The other three integrals fit [1, (8.380.3)]
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This would also follow from (L.4), because at the upper bound the terms are zero and at the lower bound only the lead,
non-series term survives. This is equivalent to the beta function. We make the substitution » = e™%, dr = —e~*dz to
transform

[e'e] 0 1 14
/ dz{ } {72} :/ dr{ } rv1
oo 1+e= o 1+7r
) 2
:/ dr{ ! } rv=t
0 1+7r

= B(v,u—v)
(v = 1) —v—1)
(n—1)!

having let © = v and y = p — v for the known integral. We have for the

second teem v=n—i4+w+1-1 p=n+w—-k—-10l p—v=i—-k-1
third term v=n—t+w+1 p=n4+w—-1—-k p—v=i—k—2
fourth teem v=n—i+w+1+j p=n+w-1—-k p—v=i—-k—-2-—j

The final solution for the expected interval spacing is

w—1

n! el
E{Di,w,logis}];)(i_w_l)!( Sy | O YA J(*l) 1—k

[ 1 ]
— T W= k) =9 -k - 1)]
n—i+w—1 1
B —— Bn—i 1—li—k—1
; n—1i+w-—1 (n—i+w+ X )
7w-_71_k3(nfi+w+l,ifk—2)
n—it4+w-—1
+w§k lli w=1-k)! (n—itw—I—1)!Bn—itw+1+ji—k—2-;)
1=2 mw—1—k=0ln—i+tw—I+7j) 0—1—j)!

(L.6)
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